A DERIVATION OF THE DISTRIBUTION OF THE INDIVIDUAL BIOEQUIVALENCE METRIC

Sanford Bolton, M. Mohan Sondhi, and Charles Diliberti

The bioequivalence metric as defined by Hyslop is:

$$\phi = [(\mu_t - \mu_r)^2 + \sigma_i^2 + 0.5 \sigma_t^2] / \sigma_r^2 - 1.5.$$

where μ_t , μ_r are the means of the pharmacokinetic parameter for the test and reference products, respectively

 σ_t^2 , σ_r^2 are the within-subject test and reference variances,

 $\sigma_i^2 \text{ is the variance of } (\mu_t - \mu_r).$ Let \overline{X}_t , \overline{X}_r , S_i^2 , S_t^2 , and S_r^2 be the sample estimates of μ_t , μ_r , σ_i^2 , σ_t^2 , and σ_r^2 , respectively, and let $\hat{\phi}$ be the sample estimate of ϕ derived from them.

The problem is to find the 95th percentile of the probability distribution of $\hat{\phi}$ and accept bioequivalence if this value is below the FDA specified value

Hyslop *et al* find the upper 95% confidence interval of a linearized version of the metric

We, instead, find the probability density function (pdf) of $\hat{\phi}$, whose integral gives us the cumulative distribution

If the 95% point of the cumulative distribution is below the FDA defined value we accept bioequivalence

- The PDF of $\hat{\phi}$ can be determined if the joint distribution of \bar{X}_t , \bar{X}_r , S_i^2 , S_t^2 , and S_r^2 is known.
- In general this would be a formidable task.
- However, under the usual assumption of statistical independence of these variables, the computation is quite feasible.
- The main steps in the derivation are summarized in the next two vugraphs.

For ease of notation define the following random variables:

$$Y = (\overline{X}_t - \overline{X}_r)^2,$$

$$Z = S_i^2,$$

$$U = 0.5 S_t^2,$$

$$V = S_r^2.$$

In terms of these, define the further intermediate variables

$$W = Y + Z$$
$$G = W + U.$$

Then the random variable $\hat{\phi}$ is given by

$$\hat{\phi} = \frac{G}{V} - 1.5.$$

• A knowledge of the PDF of \overline{X}_t and \overline{X}_r (assumed gaussian), gives the PDF of Y

(Need formula for the PDF of the square of a random variable)

• Next compute the PDF of W

(Need formula for the PDF of the sum of two independent random variables)

- Similarly compute the PDF of G = W + U.
- Next compute the PDF of G/V

(Need formula for the PDF of the ratio of two independent random variables)

• Finally, shift the PDF of G/V by 1.5 to get the PDF of $\hat{\phi}$.

Table I. Comparison of Results of Proposed Method to Hyslop's method for assessing bioequivalence for various parameter estimate values.

Nª	Mean Diff	S²I	S^2 t	S^2r	Hyslop	Proposed
122	0.0 0.0 0.0 0.2	0.02 0.02 0.02 0.12	0.02 0.02 0.03 0.12	0.0125 0.01 0.01 0.065	-0.0286(P) -0.0007(P) +0.0046(F) +0.0226(F)	1.635(P) 2.46 (P) 2.79 (F) 2.90 (F)
12	0 0.05 0 0.07	0.04 0.03 0.05 0.05	0.02 0.01 0.04 0.04	0.0475 0.03 0.0475 0.0475	-0.0324(P) -0.0087(P) +0.0004(F) +0.0082(F)	1.69 (P) 2.295(P) 2.85 (F) 3.175(F)

